sperner's Lemma, Its
Applications, and the
Complexity Class PPAD

Biaoshuai Tao

John Hopcroft Center for Computer Science
bstao@sjtu.edu.cn
https://|hc.sjtu.edu.cn/~bstao/



mailto:bstao@sjtu.edu.cn
https://jhc.sjtu.edu.cn/~bstao/

sperners Lemma



simplicial Subdivision

A simplicial subdivision of a large triangle T Is a partition of T into triangular
cells such that every intersection of two cells iIs a common edge of corner.

Nodes: corners of cells

Proper coloring: assignments of colors from {0, 1,2} to the nodes, avoiding
color i on the i-th edge of T fori € {0, 1, 2}

* |n particular, the i-th corner of T must be colored i

Fully-colored triangle: a cell having all three colors
on Its corners.




sperner's Lemma

* Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial
subdivision has a fully-colored triangle.




Sperner's Lemma (Intuitions)

* Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial
subdivision has a fully-colored triangle.

* Build a “"door” at those 0-1 edges.




Sperner's Lemma (Intuitions)

Theorem [Sperner’'s Lemma (1928)]. Every properly colored simplicial
subdivision has a fully-colored triangle.

Build a "door” at those 0-1 edges.

If we step In a “dead-end”, we find a fully-colored triangle!

Does there always exist a “dead-end”™?




Proof of Sperner's Lemma

* Fix a proper coloring.
 Construct a graph G = (V, E) where

* V:the cells and one more vertex for the outer region

* E: two vertices are adjacent if the corresponding two regions/cells share a boundary
edge with endpoints colored 0 and 1.

* Let s € V be the vertex represent the outer region




Proof of Sperner's Lemma

* Except for s, each vertex’'s degree Is at most 2.

* Avertexu € V \ {s} with degree 1 corresponds to a fully-colored triangle.
* The degree of s Is odd.

* Thus, the number of degree-1 vertices in V \ {s} is odd.

Theorem. Every properly
colored simplicial subdivision
has an odd number of fully-
colored triangles.




Generalization to Higher Dimensions

* A d-dimensional simplex is the convex hull of d + 1 points
Vo, V1, ., Vg € R* where the d vectors v; — vy, Uy —
Vg, -, Vg — Vg are linearly independent.

* A simplicial subdivision of a d-dimensional simplex T is a
partition of T into cells where
* Each cell is a d-dimensional simplex

* Two cells intersect in a common face (a simplex of any lower 0
dimension) or not at all {0,1,3}
* Proper coloring: assignments of colors from {0,1, ...,d} to
{0,2}
the nodes such that
* d + 1 corners of T have distinct color; assume w.l.0.g. that v; is
colored i . 5

* Nodes on a k-dimensional subface v;, v;, -+ v;, of T are colored
only with the colors from {i4, i3, ..., i }.



Sperner's Lemma (Generalizeq)

* Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial
subdivision has an odd number of fully-colored cells.

* Proof. Induction on dimensions.



Applications

Brouwer Fixed Point Theorem



Brouwer Fixed Point Theorem

* Theorem. Every continuous function f maps from a d-dimensional simplex
T to itself has a fixed point xo with f(xg) = x,.

» 2D version: Every continuous function f maps from a triangle T to itself has a
fixed point xo with f(xg) = x,.



Proof for 2D Version

e T: convex hull of vy, v1, v, € R?
* Each v € T can be expressed as v = agvy + a,v; + a,v, with ag + a; +a, = 1.

* Foreach i € {0,1,2}, define S; such that it contains all v = (ay, a4, a,) With

a; < a; forv’' = (ay,ay,a5) where v’ = f(v)
* In words, S; is the set of points whose i-th coordinates are mapped to weakly smaller
values by f.

e T =5,US; US,, and it suffices to prove So NS; NS, + 0.
* Both are because ag + a; + a, = 1.

* Given a simplicial subdivision of T, color each node by i if the node is In §;.

* Nodes on the edge on the opposite side of corner v; have the i-th coordinate
0. Thus, these nodes can be colored without using color .

* = We have a proper coloring!
* Sperner’'s Lemma = There exists a fully-colored triangle.



Proof for 2D Version

* Weneed: S NS NS, 0

* We have: for every simplicial subdivision of T, there is a cell/triangle xyz where
X €Sy, yES;, and z € S,.

* Construct an infinite sequence of simplicial subdivisions where the area of the
cells tends to 0.

* Foreach t = 1,2,3, ..., the t-th simplicial subdivision contains a cell x;y;z;
where x; € Sy, ¥+ € S1, and z; € S,.

* f is continuous = S, is compact = {x4, x5, X3, ... } has a convergent
subsequence that converges to some x € S.

* The same holds for the other two coordinates. Let y € §; and z € S, be the
limits of the other two convergent subsequences.

* We must have x =y = z as the area of the triangle x;y:z; tends to 0 as t — oo,



Applications

Envy-Free Cake Cutting



Cake-Cutting [Steinhaus 1948]

* Cake: interval [0, 1], to be allocated to n agents
* Allocation: (A1,4,, ..., Ay)

* A;: the piece allocated to agent i
* Each 4; is an interval
* A; and Aj can only intersect at a single point
* Value density function for agent i: f;:[0,1] = Rs,.
* Agent i values an interval [a, b] by v;([a, b]) = fffi(x)dx
* For simplicity, assume each f; is continuous

* Envy-Freeness: an allocation (44, 4,, ..., A,) is envy-free with respect to
(fl, ...,fn) If Vl,] vi(Ai) = UL(A])

* |In words, each agent i weakly prefer his/her own piece than any other’s.



Example

N fi(x) = x * Value den:suty qucUons:
* Agentl: fi(x) =x
* Agent 2: f,(x) = 0.6

H I BN BN BN NN BEN BN BN NN BN BN BN SN BN BN B B G e e B BN BN B S .



Example

* Value density functions:
4 f—
fix) = x * Agent1: f1(x) = x
* Agent 2: fo(x) = 0.6
* (A4, =1[0,0.5],4, = [0.5,1]) is an envy-
free allocation




Example

* Value density functions:
4 p—
fix) = x * Agent1: f1(x) = x
* Agent 2: f,(x) = 0.6
* (A, =10,0.5],A, =[0.5,1]) is an envy-
free allocation:
¢ vl(Al) = 0.3 > vl(Az) = 0.3




Example

* Value density functions:
4 —
fix) = x * Agent1: f1(x) = x
* Agent 2: f,(x) = 0.6

* (A, =10,0.5],A, =[0.5,1]) is an envy-
free allocation:

¢ vl(Al) — 03 2 vl(Az) — 03

3 1
* v,(4;) = P > v,(41) = P




Example

* Value density functions:
4 —
fix) = x * Agent1: f1(x) = x
* Agent 2: f,(x) = 0.6

+ Similarly, (A1 — [o,@],Az — [@1]) s
also an envy-free allocation:
* v1(4;) = % > v1(4;) = 6_130ﬁ
1

1
* v,(4;) = 2 > v,(41) = 2

* |n fact, every cut between 0.5 and g

yields an envy-free allocation.




Envy-Free Cake-Cutting

* Theorem [Su 1999]. For any value density function profile (f1, ..., f), an
envy-free allocation exists.



Proof (for 3 agents case) (1.0

¢ A3 = {(xl,XZ,x3) (S Rg:xl + X9 + X3 = 1}
* The set of all possible partitions
* Xq1,Xp,X3 are the length of the left, , segments.

(1,0,0) X
* Let each agent i color each x € A3 from the color-set 0.0.1)
{left, , } indicating his/her favorite piece ,

(break tie arbitrary).

* |If three agents color a point x € Az with three
different colors, we find an envy-free allocation.

* |t remains to show such a point exist!



(1,0,0)

» Consider the simplicial subdivision of A; on RHS. /\/\

[

(0,1,0) (0,0,1)

Proof (for 3 agents case)




Proof (for 3 agents case) s

* Consider the simplicial subdivision of A3 on RHS.
* Before coloring, “label” each node by one of the

three agents in a way shown RHS.
* so that each cell is “fully-labeled”

(010) 3 (0,0,1)




Proof (for 3 agents case)

* Consider the simplicial subdivision of A3 on RHS.

* Before coloring, “label” each node by one of the
three agents in a way shown RHS.
* so that each cell is “fully-labeled”

* For each node, let the agent corresponding to
the label to color it from the color-set {left,

}- 2

* This Is a proper coloring (Why?) (0,1,0)
* By Sperner’'s Lemma, there is a fully-colored cell.

* |f the cell i1s small enough to be considered as a
single point, we have an envy-free allocation!

4
3




Proof (for 3 agents case)

* We need: a point in Az where three agents color differently

* We have: for every “regular” simplicial subdivision, there is a cell/triangle xyz where agent 1's
color on x4, agent 2's color on y, and agent 3’s color on z are all distinct.

* Construct an infinite sequence of “regular” simplicial subdivisions where the area of the cells
tends to 0. Let x;y:z; be the fully-colored cell at the t-th subdivision.
* Let {a;, ay, ... } be an infinite sequence where agent 1's color on xg_, X4, -.. are the same.

* Since {xq, x5, ... } is infinite, at least one of the three colors is used by agent 1 for infinitely many times.
* Assume w.l.o.g. agent 1's color on x4 , Xq,, .- Is left.

* Let{by, by, ...} € {ay, ay, ...} be an infinite subsequence where agent 2's color on yp., Yp,, -.. are
the same.

« Again, since {ayq, a,, ... } is infinite, at least one color is used by agent 2 for infinitely many times.
* Moreover, this color cannot be left, due to the fully-colored property.
* Assume w.l.o.g. agent 2's color on ¥, , Vp,, - IS

Then, agent 3's color on 2., 2, ... has to be



Proof (for 3 agents case)

* We need: a point in Az where three agents color differently

* We have: for every “regular” simplicial subdivision, there is a cell/triangle xyz where agent 1's
color on x4, agent 2's color on y, and agent 3's color on z are all distinct.

* We further have: an index sequence by, b,, ... where
* Agent 1 colors xp_, Xp,, ... left

* Agent 2 colors yp, Vp,, -
* Agent 3 colors zp, Zp,, -

* The set of points where agent 1 colors left Is compact.

* We can find a subsequence of x;_, xp,, ... that converges to some x where agent 1 colors left.
* Similarly, a subsequence of yp_, yp,, ... converges to some y where agent 2 colors

* The same for z where agent 3 colors

* Finally, x,y,z must be the same point, since the area of the cell tends to 0.



Computational Complexity
Aspect

The Complexity Class PPAD



Computational Complexity

* We have seen:

* There exists a fully-colored cell in a proper coloring for the nodes of a
simplicial subdivisions.

* There exists a fixed point in a continuous function mapping from a
simplex to itself.

* There exists an envy-free cake cutting allocation.

* What if we take a computational complexity aspect?
* Can we find such an object in polynomial time?
* for the “discrete versions” of these problems...



2D-SPERNER

Given:
e Set of lattice points S = {(x,y) € Z*:x + y < n}

* A polynomial-time computable function f:S —
{0,1,2} that gives a proper coloring.

Find:
* A fully-colored triangle.

A




Approximate Envy-Free Cake Cutting

Given:
* a cake-cutting instance where each querg/

vi([a, b]) = f fi()dx

can be computed in polynomial time
* a parameter €
Find:

* an e-envy-free allocation (44, ..., A,):
Vi,j: vi(Ai) > UL(A]) — €



2D-BROUWER

* Consider a unit 2D square subdivided into n? equal subsquares,
each of sizee =1/n

* a function ¢ defined only on centers of subsquares : for each
center x, ¢(x) can only take 3 values: x + 6;, 1 = 0,1,2
* 01 = (6,0), 0, = (0,¢€)
* 0p = (—€,—€)

* and ¢ (x) does not go outside the boundary...

* A fixed point: a subsquare cornet point such that, among its eight
adjacent subsquares, all 3 possible displacements 6;, i = 0,1,2 are
presented

* There always exists fixed points (Sperner’s Lemma)



Computational Complexity”

* We have seen that
* 2D-BROUWER polynomial-time reduces to 2D-SPERNER

* Approximate Envy-Free Cake Cutting polynomial-time reduces to 2D-
SPERNER

* But what Is the computational complexity for 2D-SPERNER?



An algorithm for 2D-SPERNER

* Find a 0-1 edge on the side Ay4;.




An algorithm for 2D-SPERNER

* Find a 0-1 edge on the side Ay4;.
* This locates a triangle with at least one “door”.

A




An algorithm for 2D-SPERNER

* Find a 0-1 edge on the side Ay4;.
* This locates a triangle with at least one “door”.

Move along the “path” and search for “the
end of the line”.

Time Complexity: 0(n?)

Not polynomial time!
* The input length is only @(logn)

It doesn’t seem that we can do better without
some assumptions on the coloring function f
* We need to “teleport” from one point to another




The Complexity Class PPAD

* Proposed by Papadimitriou in 1990
* Name short for “Polynomial Parity Argument for Directed graphs”
* Definition: every search problem that reduces to END_OF_THE_LINE




A Typical PPAD problem

® 0000 —/0—9©

Input
Possible Outputs

Q o oo



2D-SPERNER Is In PPAD

* Find a 0-1 edge on the side Ay4;.
* This locates a triangle with at least one “door”.

* Move along the “path” and search for “the
end of the line”.

2D-SPERNER € PPAD

* An Initial source can be found by binary
search in polynomial time.

* The predecessor and successor can be
computed In polynomial time by computing
the colors of the three vertices of the cell.




Problems in PPAD

* SPERNER
* BROUWER
* Approximate Envy-Free Cake Cutting

* Finding a Nash equilibrium



PPAD-Completeness

* Theorem. SPERNER 1s PPAD-complete. [Papadimitriou 1990]

* Theorem. BROUWER 1s PPAD-complete. [Papadimitriou 1990]
[Chen&Deng, 2009]

* Theorem. Approximate envy-free cake cutting i1s PPAD-complete.
[Deng, Qi, Saberi, 2009]

* Theorem. Finding a Nash equilibrium is PPAD-complete.
[Daskalakis, Goldberg, Papadimitriou, 2006] [Chen, Deng, Teng,
2007]



PA

D VS N

e




PPAD vs NP

* PPAD: search problem
* NP: decision problem
* To compare them, we need “search version” of NP.

A typical NP problem, which is also well-known to be NP-complete.

[SAT] Given a Boolean formula ¢ in conjunctive normal form,
decide If It has a satisfying assignment.
b= Vaxy)) A(x, Vx, Vs V—axg) A(—xg V—x, Vxg)



FNP (Functional NP)

* “searching version” of NP: for a “yes” instance, a solution Is expected

* A binary relation P(x,y), where y is at most polynomially longer than
x,1s In FNP it and only If there Is a deterministic polynomial time
algorithm that can determine whether P(x, y) holds given both x and

V.

[FSAT] Given a Boolean formula ¢ in conjunctive normal form,
* output a satisfying assignment If there exists one,
* output “no” otherwise.



Relationship between PPAD and (F)NP

* [f END_OF_THE_LINE 1s FNP-complete, then NP = coNP.

Proof. Assume there iIs a reduction from SAT to END OF THE LINE:

* algorithm A mapping every SAT formula ¢ to a
END_OF THE_LINE instance A(¢)

* algorithm B mapping every sink t of A(¢) to
* a satisfying assignment B(t) of ¢, If exist;
* the string “"no”, otherwise

Then t is also a certificate for a unsatisfiable ¢:
* compute A(¢) and verify if t is a sink
* verify if B(t) maps to “no”




What's really going on?

* [f END_OF_THE_LINE 1s FNP-complete, then NP = coNP.

* A mismatch:
* FNP-complete problem (like FSAT): an instance may be “yes” or “no”
* PPAD: all instances are “yes” instances (Nash’s Theorem)



Take-Home Message

* PPAD-complete search problem does not seem to admit
polynomial-time algorithms.

* But it Is easier than NP-complete problems.



Reference

Su 1999] Rental Harmony: Sperner’s Lemma in Fair Division

Papadimitriou 1990] On Graph-theoretic Lemmata and Complexity Classes
Chen&Deng 2009] On the Complexity of 2D Discrete Fixed Point Problem
Deng, Qi, Saberi, 2009] On the Complexity of Envy-Free Cake Cutting

Daskalakis, Goldberg, Papadimitriou, 2006] The Complexity of Computing a
Nash Equilibrium

[Chen, Deng, Teng, 2007] Settling the Complexity of Computing Two-Player
Nash Equilibria




