
Sperner’s Lemma, Its 
Applications, and the 

Complexity Class PPAD
Biaoshuai Tao

John Hopcroft Center for Computer Science

bstao@sjtu.edu.cn

https://jhc.sjtu.edu.cn/~bstao/

mailto:bstao@sjtu.edu.cn
https://jhc.sjtu.edu.cn/~bstao/


Sperner’s Lemma



Simplicial Subdivision

• A simplicial subdivision of a large triangle 𝑇 is a partition of 𝑇 into triangular 
cells such that every intersection of two cells is a common edge of corner.

• Nodes: corners of cells

• Proper coloring: assignments of colors from {0, 1, 2} to the nodes, avoiding 
color 𝑖 on the 𝑖-th edge of 𝑇 for 𝑖 ∈ 0, 1, 2
• In particular, the 𝑖-th corner of 𝑇 must be colored 𝑖

• Fully-colored triangle: a cell having all three colors 

on its corners.



Sperner’s Lemma

• Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial 
subdivision has a fully-colored triangle.



Sperner’s Lemma (Intuitions)

• Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial 
subdivision has a fully-colored triangle.

• Build a “door” at those 0-1 edges.



Sperner’s Lemma (Intuitions)

• Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial 
subdivision has a fully-colored triangle.

• Build a “door” at those 0-1 edges.

• If we step in a “dead-end”, we find a fully-colored triangle!

• Does there always exist a “dead-end”?



Proof of Sperner’s Lemma

• Fix a proper coloring.

• Construct a graph 𝐺 = 𝑉, 𝐸 where
• 𝑉: the cells and one more vertex for the outer region

• 𝐸: two vertices are adjacent if the corresponding two regions/cells share a boundary 
edge with endpoints colored 0 and 1. 

• Let 𝑠 ∈ 𝑉 be the vertex represent the outer region



Proof of Sperner’s Lemma

• Except for 𝑠, each vertex’s degree is at most 2.

• A vertex 𝑢 ∈ 𝑉 ∖ 𝑠 with degree 1 corresponds to a fully-colored triangle.

• The degree of 𝑠 is odd.

• Thus, the number of degree-1 vertices in 𝑉 ∖ 𝑠 is odd.

Theorem. Every properly 
colored simplicial subdivision 
has an odd number of fully-
colored triangles.



Generalization to Higher Dimensions

• A 𝑑-dimensional simplex is the convex hull of 𝑑 + 1 points 
𝑣0, 𝑣1, … , 𝑣𝑑 ∈ ℝ𝑑 where the 𝑑 vectors 𝑣1 − 𝑣0, 𝑣2 −
𝑣0, … , 𝑣𝑑 − 𝑣0 are linearly independent.

• A simplicial subdivision of a 𝑑-dimensional simplex 𝑇 is a 
partition of 𝑇 into cells where
• Each cell is a 𝑑-dimensional simplex

• Two cells intersect in a common face (a simplex of any lower 
dimension) or not at all

• Proper coloring: assignments of colors from 0,1,… , 𝑑 to 
the nodes such that
• 𝑑 + 1 corners of 𝑇 have distinct color; assume w.l.o.g. that 𝑣𝑖 is 

colored 𝑖

• Nodes on a 𝑘-dimensional subface 𝑣𝑖1𝑣𝑖2 ⋯𝑣𝑖𝑘 of 𝑇 are colored 
only with the colors from {𝑖1, 𝑖2, … , 𝑖𝑘}. 

0

1 2

3

0,2

0,1,3



Sperner’s Lemma (Generalized)

• Theorem [Sperner’s Lemma (1928)]. Every properly colored simplicial 
subdivision has an odd number of fully-colored cells.

• Proof. Induction on dimensions.



Applications

Brouwer Fixed Point Theorem



Brouwer Fixed Point Theorem

• Theorem. Every continuous function 𝑓 maps from a 𝑑-dimensional simplex 
𝑇 to itself has a fixed point 𝑥0 with 𝑓 𝑥0 = 𝑥0.

• 2D version: Every continuous function 𝑓 maps from a triangle 𝑇 to itself has a 
fixed point 𝑥0 with 𝑓 𝑥0 = 𝑥0.



Proof for 2D Version
• 𝑇: convex hull of 𝑣0, 𝑣1, 𝑣2 ∈ ℝ2

• Each 𝑣 ∈ 𝑇 can be expressed as 𝑣 = 𝑎0𝑣0 + 𝑎1𝑣1 + 𝑎2𝑣2 with 𝑎0 + 𝑎1 + 𝑎2 = 1.

• For each 𝑖 ∈ 0,1,2 , define 𝑆𝑖 such that it contains all 𝑣 = (𝑎0, 𝑎1, 𝑎2) with 
𝑎𝑖
′ ≤ 𝑎𝑖 for 𝑣′ = (𝑎0

′ , 𝑎1
′ , 𝑎2

′ ) where 𝑣′ = 𝑓 𝑣
• In words, 𝑆𝑖 is the set of points whose 𝑖-th coordinates are mapped to weakly smaller 

values by 𝑓.

• 𝑇 = 𝑆0 ∪ 𝑆1 ∪ 𝑆2, and it suffices to prove 𝑆0 ∩ 𝑆1 ∩ 𝑆2 ≠ ∅.
• Both are because 𝑎0 + 𝑎1 + 𝑎2 = 1.

• Given a simplicial subdivision of 𝑇, color each node by 𝑖 if the node is in 𝑆𝑖 .

• Nodes on the edge on the opposite side of corner 𝑣𝑖 have the 𝑖-th coordinate 
0. Thus, these nodes can be colored without using color 𝑖.
• ⟹ We have a proper coloring!

• Sperner’s Lemma ⟹ There exists a fully-colored triangle.



Proof for 2D Version

• We need: 𝑆0 ∩ 𝑆1 ∩ 𝑆2 ≠ ∅

• We have: for every simplicial subdivision of 𝑇, there is a cell/triangle 𝑥𝑦𝑧 where 
𝑥 ∈ 𝑆0, 𝑦 ∈ 𝑆1, and 𝑧 ∈ 𝑆2.

• Construct an infinite sequence of simplicial subdivisions where the area of the 
cells tends to 0.

• For each 𝑡 = 1,2,3,…, the 𝑡-th simplicial subdivision contains a cell 𝑥𝑡𝑦𝑡𝑧𝑡
where 𝑥𝑡 ∈ 𝑆0, 𝑦𝑡 ∈ 𝑆1, and 𝑧𝑡 ∈ 𝑆2.

• 𝑓 is continuous ⟹ 𝑆0 is compact ⟹ {𝑥1, 𝑥2, 𝑥3, … } has a convergent 
subsequence that converges to some 𝑥 ∈ 𝑆0.

• The same holds for the other two coordinates. Let 𝑦 ∈ 𝑆1 and 𝑧 ∈ 𝑆2 be the 
limits of the other two convergent subsequences.

• We must have 𝑥 = 𝑦 = 𝑧 as the area of the triangle 𝑥𝑡𝑦𝑡𝑧𝑡 tends to 0 as 𝑡 → ∞.



Applications

Envy-Free Cake Cutting



Cake-Cutting [Steinhaus 1948]

• Cake: interval 0, 1 , to be allocated to 𝑛 agents

• Allocation: 𝐴1, 𝐴2, … , 𝐴𝑛
• 𝐴𝑖: the piece allocated to agent 𝑖

• Each 𝐴𝑖 is an interval

• 𝐴𝑖 and 𝐴𝑗 can only intersect at a single point

• Value density function for agent 𝑖: 𝑓𝑖: 0,1 → ℝ≥0.

• Agent 𝑖 values an interval 𝑎, 𝑏 by 𝑣𝑖 𝑎, 𝑏 = 𝑎׬
𝑏
𝑓𝑖 𝑥 𝑑𝑥

• For simplicity, assume each 𝑓𝑖 is continuous

• Envy-Freeness: an allocation 𝐴1, 𝐴2, … , 𝐴𝑛 is envy-free with respect to 
𝑓1, … , 𝑓𝑛 if ∀𝑖, 𝑗: 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑖 𝐴𝑗
• In words, each agent 𝑖 weakly prefer his/her own piece than any other’s.



Example

• Value density functions:
• Agent 1: 𝑓1 𝑥 = 𝑥

• Agent 2: 𝑓2 𝑥 = 0.6

0 1

𝑓1 𝑥 = 𝑥

𝑓2 𝑥 = 0.6



Example

• Value density functions:
• Agent 1: 𝑓1 𝑥 = 𝑥

• Agent 2: 𝑓2 𝑥 = 0.6

• 𝐴1 = 0,0.5 , 𝐴2 = 0.5,1 is an envy-
free allocation

0 1

𝑓1 𝑥 = 𝑥

𝑓2 𝑥 = 0.6

0.5



Example

• Value density functions:
• Agent 1: 𝑓1 𝑥 = 𝑥

• Agent 2: 𝑓2 𝑥 = 0.6

• 𝐴1 = 0,0.5 , 𝐴2 = 0.5,1 is an envy-
free allocation:
• 𝑣1 𝐴1 = 0.3 ≥ 𝑣1 𝐴2 = 0.3

0 1

𝑓1 𝑥 = 𝑥

𝑓2 𝑥 = 0.6

0.5



Example

• Value density functions:
• Agent 1: 𝑓1 𝑥 = 𝑥

• Agent 2: 𝑓2 𝑥 = 0.6

• 𝐴1 = 0,0.5 , 𝐴2 = 0.5,1 is an envy-
free allocation:
• 𝑣1 𝐴1 = 0.3 ≥ 𝑣1 𝐴2 = 0.3

• 𝑣2 𝐴2 =
3

8
≥ 𝑣2 𝐴1 =

1

8

0 1

𝑓1 𝑥 = 𝑥

𝑓2 𝑥 = 0.6

0.5



Example

• Value density functions:
• Agent 1: 𝑓1 𝑥 = 𝑥

• Agent 2: 𝑓2 𝑥 = 0.6

• Similarly, 𝐴1 = 0,
2

2
, 𝐴2 =

2

2
, 1 is 

also an envy-free allocation:

• 𝑣1 𝐴1 =
3 2

10
≥ 𝑣1 𝐴2 =

6−3 2

10

• 𝑣2 𝐴2 =
1

4
≥ 𝑣2 𝐴1 =

1

4

• In fact, every cut between 0.5 and 
2

2
yields an envy-free allocation.

0 1

𝑓1 𝑥 = 𝑥

𝑓2 𝑥 = 0.6

2

2



Envy-Free Cake-Cutting

• Theorem [Su 1999]. For any value density function profile 𝑓1, … , 𝑓𝑛 , an 
envy-free allocation exists.



Proof (for 3 agents case)

• Δ3 ≔ 𝑥1, 𝑥2, 𝑥3 ∈ ℝ3: 𝑥1 + 𝑥2 + 𝑥3 = 1
• The set of all possible partitions

• 𝑥1, 𝑥2, 𝑥3 are the length of the left, middle, right segments.

• Let each agent 𝑖 color each 𝒙 ∈ Δ3 from the color-set 
{left, middle, right} indicating his/her favorite piece 
(break tie arbitrary).

• If three agents color a point 𝒙 ∈ Δ3 with three 
different colors, we find an envy-free allocation.

• It remains to show such a point exist!

𝑥

𝑦

𝑧

(1,0,0)

(0,1,0)

(0,0,1)



Proof (for 3 agents case)

• Consider the simplicial subdivision of Δ3 on RHS.

(1,0,0)

(0,1,0) (0,0,1)



Proof (for 3 agents case)

• Consider the simplicial subdivision of Δ3 on RHS.

• Before coloring, “label” each node by one of the 
three agents in a way shown RHS.
• so that each cell is “fully-labeled”

(1,0,0)

(0,1,0) (0,0,1)

1

2 3

1
3 2

2 3
1

1

3 1 2

32



Proof (for 3 agents case)

• Consider the simplicial subdivision of Δ3 on RHS.

• Before coloring, “label” each node by one of the 
three agents in a way shown RHS.
• so that each cell is “fully-labeled”

• For each node, let the agent corresponding to 
the label to color it from the color-set {left, 
middle, right}.

• This is a proper coloring (Why?)

• By Sperner’s Lemma, there is a fully-colored cell.

• If the cell is small enough to be considered as a 
single point, we have an envy-free allocation!

(1,0,0)

(0,1,0) (0,0,1)

1

2 3

1
3 2

2 3
1

1

3 1 2

32



Proof (for 3 agents case)

• We need: a point in Δ3 where three agents color differently

• We have: for every “regular” simplicial subdivision, there is a cell/triangle 𝑥𝑦𝑧 where agent 1’s 
color on 𝑥1, agent 2’s color on 𝑦, and agent 3’s color on 𝑧 are all distinct.

• Construct an infinite sequence of “regular” simplicial subdivisions where the area of the cells 
tends to 0. Let 𝑥𝑡𝑦𝑡𝑧𝑡 be the fully-colored cell at the 𝑡-th subdivision.

• Let 𝑎1, 𝑎2, … be an infinite sequence where agent 1’s color on 𝑥𝑎1 , 𝑥𝑎2 , … are the same.
• Since {𝑥1, 𝑥2, … } is infinite, at least one of the three colors is used by agent 1 for infinitely many times.
• Assume w.l.o.g. agent 1’s color on 𝑥𝑎1 , 𝑥𝑎2 , … is left.

• Let 𝑏1, 𝑏2, … ⊆ 𝑎1, 𝑎2, … be an infinite subsequence where agent 2’s color on 𝑦𝑏1 , 𝑦𝑏2 , … are 
the same.
• Again, since 𝑎1, 𝑎2, … is infinite, at least one color is used by agent 2 for infinitely many times.
• Moreover, this color cannot be left, due to the fully-colored property.
• Assume w.l.o.g. agent 2’s color on 𝑦𝑏1 , 𝑦𝑏2 , … is middle.

• Then, agent 3’s color on 𝑧𝑏1 , 𝑧𝑏2 , … has to be right.



Proof (for 3 agents case)

• We need: a point in Δ3 where three agents color differently

• We have: for every “regular” simplicial subdivision, there is a cell/triangle 𝑥𝑦𝑧 where agent 1’s 
color on 𝑥1, agent 2’s color on 𝑦, and agent 3’s color on 𝑧 are all distinct.

• We further have: an index sequence 𝑏1, 𝑏2, … where
• Agent 1 colors 𝑥𝑏1 , 𝑥𝑏2 , … left

• Agent 2 colors 𝑦𝑏1 , 𝑦𝑏2 , … middle

• Agent 3 colors 𝑧𝑏1 , 𝑧𝑏2 , … right

• The set of points where agent 1 colors left is compact.

• We can find a subsequence of 𝑥𝑏1 , 𝑥𝑏2 , … that converges to some 𝑥 where agent 1 colors left.

• Similarly, a subsequence of 𝑦𝑏1 , 𝑦𝑏2 , … converges to some 𝑦 where agent 2 colors middle.

• The same for 𝑧 where agent 3 colors right.

• Finally, 𝑥, 𝑦, 𝑧 must be the same point, since the area of the cell tends to 0.



Computational Complexity 
Aspect

The Complexity Class PPAD



Computational Complexity

• We have seen:
• There exists a fully-colored cell in a proper coloring for the nodes of a 

simplicial subdivisions.
• There exists a fixed point in a continuous function mapping from a 

simplex to itself.
• There exists an envy-free cake cutting allocation.

• What if we take a computational complexity aspect?
• Can we find such an object in polynomial time?
• for the “discrete versions” of these problems...



2D-SPERNER

Given:

• Set of lattice points 𝑆 = 𝑥, 𝑦 ∈ ℤ2: 𝑥 + 𝑦 ≤ 𝑛

• A polynomial-time computable function 𝑓: 𝑆 →
0,1,2 that gives a proper coloring.

Find:

• A fully-colored triangle.



Approximate Envy-Free Cake Cutting

Given:

• a cake-cutting instance where each query 

𝑣𝑖 𝑎, 𝑏 = න
𝑎

𝑏

𝑓𝑖 𝑥 𝑑𝑥

can be computed in polynomial time

• a parameter 𝜖

Find:

• an 𝜖-envy-free allocation 𝐴1, … , 𝐴𝑛 : 
∀𝑖, 𝑗: 𝑣𝑖 𝐴𝑖 ≥ 𝑣𝑖 𝐴𝑗 − 𝜖



2D-BROUWER

• Consider a unit 2D square subdivided into 𝑛2 equal subsquares, 
each of size 𝜖 = 1/𝑛

• a function 𝜙 defined only on centers of subsquares : for each 
center 𝑥, 𝜙(𝑥) can only take 3 values: 𝑥 + 𝛿𝑖, 𝑖 = 0,1,2
• 𝛿1 = (𝜖, 0), 𝛿2 = (0, 𝜖)

• 𝛿0 = (−𝜖,−𝜖)

• and 𝜙(𝑥) does not go outside the boundary...

• A fixed point: a subsquare cornet point such that, among its eight 
adjacent subsquares, all 3 possible displacements 𝛿𝑖 , 𝑖 = 0,1,2 are 
presented

• There always exists fixed points (Sperner’s Lemma)



Computational Complexity?

• We have seen that
• 2D-BROUWER polynomial-time reduces to 2D-SPERNER
• Approximate Envy-Free Cake Cutting polynomial-time reduces to 2D-

SPERNER

• But what is the computational complexity for 2D-SPERNER?



An algorithm for 2D-SPERNER

• Find a 0-1 edge on the side 𝐴0𝐴1.

0

1



An algorithm for 2D-SPERNER

• Find a 0-1 edge on the side 𝐴0𝐴1.

• This locates a triangle with at least one “door”.

0

1



An algorithm for 2D-SPERNER

• Find a 0-1 edge on the side 𝐴0𝐴1.

• This locates a triangle with at least one “door”.

• Move along the “path” and search for “the 
end of the line”.

• Time Complexity: 𝑂 𝑛2

• Not polynomial time!
• The input length is only Θ log𝑛

• It doesn’t seem that we can do better without 
some assumptions on the coloring function 𝑓
• We need to “teleport” from one point to another

0

1



The Complexity Class PPAD

• Proposed by Papadimitriou in 1990

• Name short for “Polynomial Parity Argument for Directed graphs”

• Definition: every search problem that reduces to END_OF_THE_LINE

END_OF_THE_LINE Problem

• 𝐺 = (𝑉, 𝐸) is a directed graph of exponential size, every vertex 
having at most one predecessor and one successor

• For each 𝑣 ∈ 𝑉, poly-time computable 𝑓(𝑣) returns its 
predecessor and successor

• Given function 𝑓 and a source 𝑠 ∈ 𝑉, find a sink or another sink



A Typical 𝑃𝑃𝐴𝐷 problem



2D-SPERNER is in PPAD

• Find a 0-1 edge on the side 𝐴0𝐴1.

• This locates a triangle with at least one “door”.

• Move along the “path” and search for “the 
end of the line”.

2D-SPERNER ∈ PPAD

• An initial source can be found by binary 
search in polynomial time.

• The predecessor and successor can be 
computed in polynomial time by computing 
the colors of the three vertices of the cell.

0

1



Problems in PPAD

• SPERNER

• BROUWER

• Approximate Envy-Free Cake Cutting

• Finding a Nash equilibrium



PPAD-Completeness

• Theorem. SPERNER is PPAD-complete. [Papadimitriou 1990]

• Theorem. BROUWER is PPAD-complete. [Papadimitriou 1990] 
[Chen&Deng, 2009]

• Theorem. Approximate envy-free cake cutting is PPAD-complete. 
[Deng, Qi, Saberi, 2009]

• Theorem. Finding a Nash equilibrium is PPAD-complete. 
[Daskalakis, Goldberg, Papadimitriou, 2006] [Chen, Deng, Teng, 
2007] 



PPAD vs NP?



PPAD vs NP

• PPAD: search problem

• NP: decision problem

• To compare them, we need “search version” of NP.

A typical NP problem, which is also well-known to be NP-complete.

[SAT] Given a Boolean formula 𝜙 in conjunctive normal form, 
decide if it has a satisfying assignment.

𝜙 = 𝑥1 ∨ ¬𝑥2 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥5 ∨ ¬𝑥6 ∧ (¬𝑥1 ∨ ¬𝑥4 ∨ 𝑥6)



𝐹𝑁𝑃 (Functional NP)

• “searching version” of 𝑁𝑃: for a “yes” instance, a solution is expected

• A binary relation 𝑃(𝑥, 𝑦), where 𝑦 is at most polynomially longer than 
𝑥, is in 𝐹𝑁𝑃 if and only if there is a deterministic polynomial time 
algorithm that can determine whether 𝑃(𝑥, 𝑦) holds given both 𝑥 and 
𝑦.

[FSAT] Given a Boolean formula 𝜙 in conjunctive normal form,

• output a satisfying assignment if there exists one,

• output “no” otherwise.



Relationship between PPAD and (F)NP

• If END_OF_THE_LINE is 𝐹𝑁𝑃-complete, then 𝑁𝑃 = 𝑐𝑜𝑁𝑃.

Proof. Assume there is a reduction from SAT to END_OF_THE_LINE:

• algorithm 𝐴 mapping every SAT formula 𝜙 to a 
END_OF_THE_LINE instance 𝐴(𝜙)

• algorithm 𝐵 mapping every sink 𝑡 of 𝐴(𝜙) to
• a satisfying assignment 𝐵(𝑡) of 𝜙, if exist;
• the string “no”, otherwise

Then 𝑡 is also a certificate for a unsatisfiable 𝜙:

• compute 𝐴(𝜙) and verify if 𝑡 is a sink

• verify if 𝐵(𝑡) maps to “no”



What’s really going on?

• If END_OF_THE_LINE is 𝐹𝑁𝑃-complete, then 𝑁𝑃 = 𝑐𝑜𝑁𝑃.

• A mismatch:
• 𝐹𝑁𝑃-complete problem (like FSAT): an instance may be “yes” or “no”
• 𝑃𝑃𝐴𝐷: all instances are “yes” instances (Nash’s Theorem) 



Take-Home Message

• PPAD-complete search problem does not seem to admit 
polynomial-time algorithms.

• But it is easier than NP-complete problems.



Reference

[Su 1999] Rental Harmony: Sperner’s Lemma in Fair Division

[Papadimitriou 1990] On Graph-theoretic Lemmata and Complexity Classes 

[Chen&Deng 2009] On the Complexity of 2D Discrete Fixed Point Problem

[Deng, Qi, Saberi, 2009] On the Complexity of Envy-Free Cake Cutting

[Daskalakis, Goldberg, Papadimitriou, 2006] The Complexity of Computing a 
Nash Equilibrium

[Chen, Deng, Teng, 2007] Settling the Complexity of Computing Two-Player 
Nash Equilibria


